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One of the few exact non-linear solutions applying to adhesive debonding is for the de- 
formations in a pressurized thin plate strip of infinite length subjected over its span to 
externally applied pressure and temperature. For example, if the ends of the span are 
clamped (bonded) to a substratum leaving an unbonded span to be loaded by pressure or 
temperature, critical values of these latter quantities, at which debonding may occur, can 
be calculated using an energy balance criterion. To date, only the limiting cases of the 
general thin plate solution have been used to deduce these critical pressure or temperature 
loadings: (1) the plate thickness to span ratio is sufficiently large that nearly all the strain 
energy is in bending, i.e., the “thick plate” case, and (2) the opposite case wherein the ratio 
is sufficiently small that mainly stretching energy is involved, i.e., the “membrane”. This 
last case, for example, has applications to the adhesion of paints and coatings. The purpose 
of this paper is to present the results of calculations for pressure criticality over the range 
of all plate thickness between the aforementioned two previously available limiting cases. 

TECHNICAL DISCUSSION 

In order to assess the quality of an adhesive bond in an arbitrary geometrical 
configuration, it is necessary, from the standpoint of continuum mechanics 
at  least, to measure the specific adhesive fracture energy (yo) in some known 
calibration geometry. One of the simplest illustrative geometries for this 
purpose is the cantilever beam bonded to a rigid substratum. The analysis 
follows that for the specific cohesive fracture energy (7,) for a split cantilever‘ 
(Figure 1). The strain energy (U) stored in the top elastic beam, assumed 
clamped at the end of the split, is one-half of the work done by the applied 
force (F) acting through the equilibrium displacement, namely 

I;’ FL3 v = - . -  
2 3EI 

t Presented at the Borden Award Symposium honoring William A. Zisman during the 
National Meeting of the American Chemical Society in New Orleans, LA, March 21-25, 
1977. 
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in which 1 = b(2t)3/12 is the moment of inertia, and E is the tensile Young’s 
modulus. The incremental increase in new fracture energy (r), counting 
only that associated with the top beam, is d r  = y,d(Lb). Then equating this 
incremental work per unit area with the incremental change in strain energy 
dU/a(Lb), one has 

dU F2L2 6F2L2 
- (2) 

ar y c = - -  
q ~ b )  - a(Lb) - 2 m  ~ b 2 ( 2 t ) 3  

which is the determining equation for ye  providing that the force F is inter- 
preted to be that at the instant of debond, FCr. The similarity in analysis to 
an adhesively bonded top beam is immediately evident, because at the mid- 
plane, which is the locus of splitting, the deformation is zero in both cases. 
The only difference, therefore, is in the physical distinction between cohesive 
and adhesive separation, which is incorporated in this continuum mechanics 
analysis by distinguishing a yc from a yo. For the latter case one replaces 
y, in (2) by yar the specific adhesive fracture energy, namely 

F 

I- 
F 

FIGURE 1 Split cantilever bcani. 

There are, however, other geometrical configurations which can be used 
as calibration cases to determine ya, such as the “blister” discussed in Ref. 2.  
Here it develops that for an initial blister debond radius of a and blister 
thickness h that 

3(1 -v)’ u p : r ~  
Ya = T [ Z ]  * [XI (4) 

in which pCr is the critical pressure under the round blister at the instant of 
fracture; v is Poisson’s ratio. In the earlier discussion’ it was observed that 
this geometry represented certain physical situations occurring in “blistered” 
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(as by heat) coatings. Usually, however, for thin coatings the thickness to 
radius ratio (h/a) is rather small thus more resembling a “membrane” than a 
“plate”. Hence, an analysis based upon stretching energy, rather than the 
bending energy which predominates in (4), should be used. Unfortunately, 
however, this apparently simple problem is actually non-linear and has 
eluded analytical s o l ~ t i o n . ~  

In order to study the transition phenomenon as the plate thickness de- 
creases from a case of nearly all bending energy (h/u 0-1) to nearly all 
stretching energy (h/u + 0), it is possible to utilize an existing analytical 
solution for a plate strip,4* including also the effect of temperature as well 
as pressure loading. The specific geometry to be considered consists of an 
infinitely long strip in the x-direction, of width, b, in the y-direction, and of 
thickness, h. While two cases were considered in the references, corresponding 
to simply supported and to clamped ends at  y = +b/2, only the latter case 
will be analyzed here. Also the solution was presented for arbitrarily varying 
temperature through the plate thickness, but this adhesive debonding dis- 
cussion will treat only the isothermal situation. 

The exact limit isothermal solutions for the specific adhesive fracture 
energy yo were deduced’ for all bending (“thick plate”) and all stretching 
(“membrane”) as: 

343(1-v2) u ’ [ 288 *-I h 
Membrane: ya = aE(p,,/E)+ 

The difference in functional behavior upon the critical pressure and geometry 
are to be noted. 

The transition variation between these two limits is the object of this 
study. It utilized the basic analytical solution from Ref. 4, and the more 
general energy balance which follows from the second law of thermo- 
dynamics,6-8 i.e. 

Work done on system = strain energy stored + new fracture surface 

After some lengthy numerical computations, due to the complicated trans- 
cendental functions involved, the calculation of yo over the entire range of 
h/a was obtained. The results are shown in Figure 2 with (y,/Ea) as a para- 
meter, along with the limit solutions ( 5 )  and (6). It may be noted that, as a 
function of y,/Ea, the thick plate solution governs at the larger values of 
h/a, while for the smaller thickness ratios the membrane is a close approxi- 
mation. The transition range between the two is quite narrow. 

energy created (7) 
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1 I I 

/o- 10- /O-' /0° 
n/a 

FIGURE 2 Critical pressure for debonding, showing narrowness of the transition region. 

One is tempted to conclude that quantitatively, the same range of transition 
will exist for pressurized circular blisters. Also, should there be sufficient 
need, temperature variations could be introduced into the energy balance 
to simulate blistering of paint coatings due to either thermal buckling of the 
coating or tensile cracking in unbonded circular portions. Initial results for 
this thermal situation, however, may be sufficient (as taken from the limit 
cases of Ref. 1 for the plate strip) when used in conjunction with the shape 
of the transition region as presented for this one case. 
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